Introduction

- Virtual Reality has shown promise as a physical therapy intervention technique because:
 - Enhances Neuroplasticity
 - Goal oriented and motivating
 - Repetition is important
 - Task oriented
 - At the appropriate level for the patient
 - Augmented feedback
 - Virtual teacher
 - Allows seamless collection of quantitative data to document objective changes
VR Application for Stroke Rehabilitation

- Customizable to individual client needs
- Provides a highly immersive environment where the client can safely practice common ADLs and improve the motor function required to perform these activities
- Delivery of content is highly scaleable
- Generates quantitative data for the therapist to identify movement limitations and to assess the effectiveness of the intervention

Experimental Setup

Hardware

- Three 8’ by 10’ rear projected screens forming an open ended cube with stereoscopic display
 - VizTek ICUBE display system
 - Six Epson Powerlite 9300i projectors
- Networked PC Cluster
 - Three high-end, dual Xeon processor PCs with genlocked Nvidia FX3000G graphics cards
- Real-time motion capture capability within the visualization space
 - Polhemus FASTRAK system
 - Vicon MX series system
Overview of System Architecture

Experimental Setup

Software

• Five main software components
 – 3D Studio Max 6.0
 – Virtools Dev 3.0
 – Virtual Reality Peripheral Network (VRPN)
 – Network Component Integrator (NCI)
 – C++ (Virtools SDK, Back-end Database)
Initial Virtual Environment

• Three-walled virtual kitchen
• Virtual reference arm
 – Driven by the client’s arm motions
• Task can be scaled to the client’s abilities
Calculating Joint Angles

- Joint angles are calculated at pre-selected time intervals and the data points are stored in a back-end database.
- Uses an underlying twist-based representation of the human body commonly used to model robotic systems.
- Kinematic data is reconstructed offline using Matlab and analyzed by the therapist.
Example Kinematic Data

- Shoulder
 - Flexion/Extension
 - Abduction/Adduction
 - Rotation
- Elbow
 - Flexion/Extension
- Forearm
 - Pronation/Supination
- Wrist
 - Flexion/Extension
 - Radial/Ulnar deviation

Conclusions

- Developed a framework for VR based rehabilitation interventions that permits
 - Shaping the task to the client’s abilities
 - Increased practice time
 - Task oriented
 - Seamless collection of kinematic data
 - Immersive environment
 - Scaleable delivery of content
- Work to further develop the environment involves
 - Adding a larger set of scenarios
 - Developing user-friendly front-end application for therapist
 - Remote control of application using a Tablet PC or PDA